Expression of Pyrococcus furiosus superoxide reductase in Arabidopsis enhances heat tolerance.

نویسندگان

  • Yang Ju Im
  • Mikyoung Ji
  • Alice Lee
  • Rushyannah Killens
  • Amy M Grunden
  • Wendy F Boss
چکیده

Plants produce reactive oxygen species (ROS) in response to environmental stresses sending signaling cues, which, if uncontrolled, result in cell death. Like other aerobic organisms, plants have ROS-scavenging enzymes, such as superoxide dismutase (SOD), which removes superoxide anion radical (O(2)(-)) and prevents the production and buildup of toxic free radicals. However, increasing the expression of cytosolic SODs is complex, and increasing their production in vivo has proven to be challenging. To avoid problems with endogenous regulation of gene expression, we expressed a gene from the archaeal hyperthermophile Pyrococcus furiosus that reduces O(2)(-). P. furiosus uses superoxide reductase (SOR) rather than SOD to remove superoxide. SOR is a thermostable enzyme that reduces O(2)(-) in a one-electron reduction without producing oxygen. We show that P. furiosus SOR can be produced as a functional enzyme in planta and that plants producing SOR have enhanced tolerance to heat, light, and chemically induced ROS. Stress tolerance in the SOR-producing plants correlates positively with a delayed increase in ROS-sensitive transcripts and a decrease in ascorbate peroxidase activity. The SOR plants provide a good model system to study the impact of cytosolic ROS on downstream signaling in plant growth and development. Furthermore, this work demonstrates that this synthetic approach for reducing cytosolic ROS holds promise as a means for improving stress tolerance in crop plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing Heat Tolerance of the Little Dogwood Cornus canadensis L. f. with Introduction of a Superoxide Reductase Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus

Production of reactive oxygen species (ROS) can be accelerated under various biotic and abiotic stresses causing lipid peroxidation, protein degradation, enzyme inactivation, and DNA damage. Superoxide reductase (SOR) is a novel antioxidant enzyme from Pyrococcus furiosus and is employed by this anaerobic hyperthermophilic archaeon for efficient detoxification of ROS. In this study, SOR was int...

متن کامل

In vitro reconstitution of an NADPH-dependent superoxide reduction pathway from Pyrococcus furiosus.

A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute th...

متن کامل

Genetic engineering of Pyrococcus furiosus to use chitin as a carbon source

BACKGROUND Bioinformatic analysis of the genes coding for the chitinase in Pyrococcus furiosus and Thermococcus kodakarensis revealed that most likely a one nucleotide insertion in Pyrococcus caused a frame shift in the chitinase gene. This splits the enzyme into two separate genes, PF1233 and PF1234, in comparison to Thermococcus kodakarensis. Furthermore, our attempts to grow the wild type st...

متن کامل

Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus.

Pyrococcus furiosus, a hyperthermophilic archaeon growing optimally at 100 degrees C, encodes three protein chaperones, a small heat shock protein (sHsp), a prefoldin (Pfd), and a chaperonin (Cpn). In this study, we report that the passive chaperones sHsp and Pfd from P. furiosus can boost the protein refolding activity of the ATP-dependent Cpn from the same hyperthermophile. The thermo-stabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 151 2  شماره 

صفحات  -

تاریخ انتشار 2009